有效的数独
有效的数独
问题描述
判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
上图是一个部分填充的有效的数独。
数独部分空格内已填入了数字,空白格用 '.' 表示。
示例 1:
输入:
[
["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
输出: true
示例 2:
输入:
[
["8","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
输出: false
解释: 除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。
但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
说明:
一个有效的数独(部分已被填充)不一定是可解的。
只需要根据以上规则,验证已经填入的数字是否有效即可。
给定数独序列只包含数字 1-9 和字符 '.' 。
给定数独永远是 9x9 形式的。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/valid-sudoku
思路
vector<vector<int>> rows(9, vector<int>(9, 0));
每行的数字1-9未出现过vector<vector<int>> cols(9, vector<int>(9, 0));
每列的数字1-9未出现过vector<vector<int>> cell(9, vector<int>(9, 0));
每个3x3 宫格内数字1-9未出现过
在遍历的过程中,i行的数字num(char)第一次出现时,将rows[i]中第num-'1'+1列的值即rowsi置为1,如果在i行第二次出现即rowsi==1,则不是有效的数独,返回false;
其他两种,同理。
其中非常有意思的一点是,将9*9的宫格转化为9个3*3的宫格时,每个3*3的宫格占cell中的一行,在遍历i、j时,用(i/3)*3+j/3的值即可计算出board[i][j]在第几个宫格。
题解
class Solution {
public:
bool isValidSudoku(vector<vector<char>> &board) {
vector<vector<int>> rows(9, vector<int>(9, 0));
vector<vector<int>> cols(9, vector<int>(9, 0));
vector<vector<int>> cell(9, vector<int>(9, 0));
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (board[i][j] == '.') continue;
int e = board[i][j] - '1';
if (rows[i][e] == 0) rows[i][e] = 1;
else return false;
if (cols[j][e] == 0) cols[j][e] = 1;
else return false;
if(cell[(i/3)*3+j/3][e]==0) cell[(i/3)*3+j/3][e]=1;
else return false;
}
}
return true;
}
};